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ABSTRACT

Estimating the frequencies of signals in a noisy environment has numerous

applications in digital signal processing. In December 1980, Golub and Van

Loan proposed a spectral estimator called the Total Least Squares ( TLS )

technique which is a refinement of the Least Squares ( LS ) technique. In this

thesis, we first describe the origin of the TLS technique and its applications to

frequency estimation. Furthermore, we present a numerical implementation for

resolving two damped / undamped closely-spaced sinusoidal signals in white

noise.

Next, we introduce TLS extensions such as the Constrained Total Least

Squares ( CTLS ) technique and the Linear Constraint Total Least Squares

( LCTLS ) technique. The CTLS addresses the case where the noise

components are related and the LCTLS addresses the case where one desires

to resolve between two narrowband signals close in frequency, one of which is

known. Finally, we present a numerical implementation of the Recursive Total

Least Squares (RTLS ) technique and apply it to the case of a signal with a

fixed frequency together with a signal with a time-varying frequency.
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I. INTRODUCTION

Estimating the frequencies of signals in a noisy environment has numerous

applications in digital signal processing. Various techniques have been proposed

to solve that problem such as the Pisarenko algorithm [1, p. 623] and the

MUSIC algorithm [1, p. 626]. These two algorithms adopt the eigen-

decomposition technique to obtain the solution from the partitioned signal and

noise subspaces. In this thesis, we present a subspace technique for frequency

estimation called the Total Least Squares algorithm. Two extensions, the

Constrained Total Least Squares algorithm and the Recursive Total Least

Squares algorithm, are also introduced.

In Chapter II, we first introduce the ordinary Least Squares ( LS )

algorithm [1, p. 518]. The LS algorithm is used to solve the overdetermined set

of linear prediction equations Ax=b, where A and b are mxn and mxl matrices

depending on data, and x is an array of parameters. In other words, the LS

algorithm computes the solution xts so that the Euclidean norm II Ax-b II is

minimum. Note that the LS algorithm considers the errors or perturbations in

the observation vector b only. However, in practice, we also need to consider

the errors or perturbations occurring in the data matrix A. Thus, we consider

the Total Least Squares ( TLS ) algorithm [2] which is an extension of the

classical LS algorithm and has been applied to frequency estimation in signal

processing to locate signals in the presence of additive noise. This algorithm

can be viewed as a generalized LS algorithm and it has better performance

than the ordinary LS algorithm. However, it is computationally more expensive.

1. . . . . ... .. . . ... .. . . .. . . ..



We obtain the TLS solution XTLs by simultaneously minimizing the

perturbations AA and Ab which exist in the data matrix A and the observation

vector b, respectively.

When there exists some linear dependence algebraic relationship among the

correlated noise perturbation components in A and b, the TLS algorithm has to

be modified to take this dependence into account. The modification leads to the

Constrained Total Least Squares ( CTLS ) algorithm [6]. To be more specific,

the CTLS algorithm results from an unconstrained minimization problem over a

small set of variables. It uses the fact that the elements in perturbaaons AA

and Ab are algebraically correlated. By employing a new matrix F with a

smaller dimension and a white noise random vector w, it minimizes the

Frobenius norm of AC to derive the solution Xcu.s Next, we introduce the

LCTLS algorithm [10]. This algorithm can be considered as an extension of

the TLS algorithm and a special case of the CTLS algorithm. It is used to

resolve closely-spaced frequencies with a given known frequency component.

An example and a summary of the main steps needed to be implemented the

LCTLS are presented.

Chapter III presents a numerical implementation of the TLS algorithm for

resolving two closely-spaced damped / undamped sinusoids. We investigate the

effects of choosing different signal phase angles, signal-to-noise ratios ( SNR )

and prediction filter orders. In addition, we explore the estimation behavior of

the algorithm due to incorrect singular subspace partitions.

In Chapter IV, we introduce the Recursive Total Least Squares ( RTLS)

algorithm [11]. The algorithm is used in this thesis to estimate the frequencies

of two complex sinusoidal signals in white noise. We adopt a spherical

2



subspace updating [12] technique and use an eigendecomposition method to

obtain the solution XRTIs. Four parameters are varied: the signal-to-noise

( SNR ) ratio, the prediction filter order, the forgetting factor and the range of

the frequencies involved. We also study the algorithm performances obtained

by using the signal or the noise subspace to estimate the frequencies. Last,

Chapter V presents conclusions.
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II. THE TOTAL LEAST SQUARES TECHNIQUE

AND ITS EXTENSIONS

A. INTRODUCTION

Resolving two closely spaced sinusoidal signals in a noisy environment is a

problem of importance in digital signal processing. This problem becomes

rather difficult when the number of data samples is small or the signal-to-noise

ratio ( SNR ) is low. Here, we adopt the Total Least Squares ( TLS ) approach

to solve a Linear Prediction Equation ( LPE ) to improve the resolution. Note

that the performance of the algorithm deteriorates when SNR is low, say below

3dB.

The TLS technique is the generalization of the ordinary Least Squares

(LS ) technique [I] and it is often used to solve an overdetermined set of linear

equations obtained from noisy observations. When there are more equations

than unknowns, the system Ax=b is said to be overdetermined. The TLS

method takes into account the errors that occurs in the data matrix A as well

as in the observation vector b and try to attenuate these noise effects on both

sides simultaneously. Further details are presented later in this section.

B. LEAST SQUARES ( LS ) ALGORITHM

1. Introduction

First, recall the ordinary Least Squares ( LS ) technique. For the LS

algorithm, the data matrix A is assumed to be free of error and all errors are

confined to the observation vector b. However, this assumption is not always

realistic since many errors ( perturbations / interference ) like sampling errors,

4



modeling errors and instrument errors, etc. may result in inaccuracies or

uncertainties in A.

2. Algorithm Derivation

We obtain the LS solution x by minimizing the Euclidean norm

II Ax - b II. Thus, it is equivalent to the following expression:

miniAbll (2.1)

x,,&b

subject to

A x = b + Ab (2.2)

which leads to

XLS= ( AHA)lAHb = A+b (2.3)

where A+ is the pseudoinverse of A, ArHA is the correlation matrix. The

superscript notation ' H' denotes the complex conjugate transposition. Note

that the LS algorithm works well when considering the noise only in the

observation vector b.

C. TOTAL LEAST SQUARES ( TLS ) ALGORITHM

1. Introduction

First, we represent the forward linear prediction equation Ax=b in a

matrix form:

5



I 01 t21"11 Xp-. +1 (2.4)
I * 4N- I I - J

•i is the observed noisy signal, P is the prediction filter order and is usually

larger than the number M of exponentials but smaller than the number N of data

samples.

If the observed data is noisy, from a statistical viewpoint the LS

solution will no longer be optimal because it can be biased and suffer

covariance from the accumulation of noise errors in AHA. To alleviate this

problem, we adopt the Total Least Squares ( TLS ) technique [2]. It has been

shown to be equivalent to the minimum norm method [3] and it is used to

diminish the bias accrued in AHA or to remove the noise components by using

a perturbation analysis on A and b of the smallest 2-norm that makes the

system equations consistent. The TLS solution can be obtained by minimizing

II AC II = II[ AAIAb 111 (2.5)

subject to

(A + AA ) x = b +Ab (2.6)

which leads to

XTLS - ( AHA - 2I )'lAHb (2.7)

where AA and Ab are two independent noise perturbations and a2 is the

minimum eigenvalue of [ Aib ]H[ Aib ].

6



Note that we use a zero mean white identically independent

distributed ( i.i.d. ) Gaussian noise in our analysis of the TLS algorithm. When

the noise is not white but colored and still uncorrelated with the signals, a

whitening filter ought to be applied. This kind of filter is capable of transforming

a stationary discrete-time non-white process at the input into a white

uncorrelated data sequence at the output. The whitening procedure takes the

non-white noise vector w and computes R=E[ww*]=ZZ*, using a Cholesky

decomposition. This leads to the definition of a new white noise vector 8 where

8 = Z-w. (2.8)

The whitening procedure can be performed by using a prediction-error filter

which offers a linear prediction equation same as Ax=b. Basically, the

prediction is dependent on the presence of correlation between adjacent

samples of the input non-white stochastic process. Then, we can successively

decrease the correlations by increasing the prediction-error filter order high

enough until it ultimately gets to a point at which the output sequence is

composed of ( white ) uncorrelated samples [4, p. 216].

The TLS solution XTLS is obtained by using information obtained from

the singular value decomposition ( SVD ) of the matrix C=[ A lb ] with a

dimension (N-P)x(P+ 1), i.e.,

C =LZVH (2.9)

where U and V are unitary square matrices with a dimension (N-P)x(N-P) and

(P+l)x(P+l), respectively; X is a rectangular diagonal matrix with a dimension

(N-P)x(P+l) consisting of the singular values in decreasing order with the largest

7



one on the upper-left-handed corner. The matrices U, V and £ can be

partitioned as

U=[u 11u 2 1.., IUN.P] (2.10)

V = [ v 1Iv 2 1 ... I vP+1] (2.11)

and I = diag ( a;, • • •, ap, ap÷ ). (2.12)

The columns of the matrices U and V are the unitary eigenvectors of A AH

and AHA respectively.

2. Algorithm Derivation

The TLS algorithm described above can be summarized into the

following equations [5] :

([Alb ] + [ AAIAb])(.)=0 (2.13)

or

(C + AC ) z =0 (2.14)

where

C=[AIb], AC =[AAIAb], z=(. (2.15)

From the homogeneous equation (2.13), we see that the TLS problem

finds the minimum norm of the perturbation matrix AC such that ( C+AC ) is

8



rank deficient. In other words, the TLS solution can be formulated as seeking a

solution vector x [6] to the following problem

mminAC '
AC.X ,9 (2.16)

subject to

C+AC() (2.17)

where

IIACIfl = trA&C * AC), (2.18)

"11 • 1IF denotes the Frobenius norm and " tr" is the trace of a matrix.

Next, the matrix C is decomposed in the following form

C=[Ul U21 y 1 jv (2.19)

where U1 , Ei and V1 correspond to the signal subspace; U2 , E2 and V2

correspond to the noise subspace. We separate the signal subspace from the

noise subspace by using the number of sinusoids. Two different cases need to

be considered. The first one considers the case where the singular values are

all distinct. The second one considers the case where some of the singular

values are multiple. For the first case, we usually assume that the last element

ap+1 in the diagonal matrix Z is the smallest singular value and it corresponds to

the last vector vp+1 in the unitary matrix V. Then we get
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[V(p+I)1

XTLS - (Vp+IP+I (2.20)
[V(p+I)J

where (vp+l)p+1 is the last element of the last singular vector Vp+ 1 and is

assumed to be non-zero for normalization. If (vp+1 )p+1 is equal to zero, a TLS

solution does not exist. For the second case, we assume that the P-M+1

smallest singular values are equal, i.e.,

01 'a (;2 2t .Ž ;M >C;M+1÷ -' P+l (2.21)

and set V2 to be a column partition of V where

V 2 = (VM+÷,. •, Vp+1 ) (2.22)

or

V2=(CT (2.23)

where CT represents the first row of the matrix V2.

Next, we introduce the Householder ( reflection ) matrix Q which is

used to solve the TLS problem. It has the property to zero out specific entries

in a matrix or vector. Usually, it is defined as [4, p. 428]:

Q=-Ip -2 v(2.24)
VV

10



where

I is an mxm identity matrix,

V is an mxl complex vector which corresponds to the complex vector vi in

V2 defined in (2.22) and has the Euclidean norm

1

lvI = (vHv)2. (2.25)

The vector v can be defined below for analysis:

V=C* aep J - aTeP (2.26)

a 11 cU I a±c 1lCll (2.27)

e=[0, "--, 0, 1]lxpa=e v =Cp-a (2.28)

For any given vector, we can construct a Householder matrix so that all the

energy is compressed into a selected partitioned column vector [7]. This leads

to the following TLS solution:

V2Q[W 0 ] (2.29)

cTQ =[0, • •, 0, a. (2.30)

Now we express V2Q to extract the last column, which is used in the

solution:

11



V2Q =V 2 [ q,1 q2 1Iq3 1... I qp (2.31)

and let

V2qp (2.32)

Note that

= I1CI12 _ a*Cp _ aCp Xp 4

=11c1l 2 -2a *cp + IICC12 a *II

IcPI IcPI

2(jiaII2 _ CpC i) (C. IaIXi =C lil 2  CH Cc)

2(oa a c). (2.33)

The last column of the matrix Q is given by

~e~ - 2c )- c e

ep2a* (ac)(c.e)

=e- CpC ~cpcep -ac *+ aa ep
- a*(a-cp)

C*(acxp) =c*

a*(C- a X. (2.34)
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Thus,

, V2c
y = V2qp= (2.35)

and

x =y =_ V2c*- V2c* (2.36)

Equation (2.36) corresponds to the noise subspace case since V2 and c are

obtained from V 2 which is described in (2.19). Similarly, we can derive the

solution vector from the signal subspace. First, we use the identity

v; viLc v2H] =I(2.37)

which leads to

gg Hg+cHc=1 C H c=l-gHg

V1g+ V2c=O == V2c =-Vig (2.38)

Next, we substitute (2.38) into (2.36) and obtain the alternative TLS solution

corresponding to the signal subspace case:

vlg"
XTS = 1- gHg (2.39)

where V, and g are obtained from V1 which is also described in (2.19).

13



D. CONSTRAINED TOTAL LEAST SQUARES (CTLS)

ALGORITHM

1. Introduction

When the noise components contained in the augmented matrix C

are algebraically correlated or linearly dependent ( so called constraints ), the

TLS technique is no longer an optimal frequency spectral estimator. In this

case, we have to reformulate the problem to reduce the dimensionality of the

disturbances. Thus, the TLS needs to be reformulated to reduce the

dimensionality of the noise entries. Thus, the Constrained Total Least Squares

( CTLS ) algorithm, proposed by Abatzoglou et al [6], can be viewed as the

natural extension of the TLS algorithm. In addition, the CTLS can be shown to

be equivalent to the Maximum Likelihood ( ML ) algorithm. The CTLS solution

can be obtained from a constrained state-space-parameter ML estimator

together with a Newton algorithm [8].

2. Algorithm Derivation

In order to remove the correlated noise perturbation components

among A and b, we derive the CTLS algorithm from an unconstrained

minimization problem over a small set of variables. Let us redefime AA and Ab

both as linearly constrained.

AA= Fw I F 2w I ... I Fpw] (2.40)

Ab = Fp+lw (2.41)

Then the augmented error matrix AC is formed by

AC = [ AAIAb]= Fw I F2w I Fw I Fp+lw] (2.42)
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or

AC = [ACI I ... I ACpI ACpI -Fw, (2.43)

F= [FI1F2 1 ... I FpI Fp+I] (2.44)

where F is a matrix whose elements are related to those of independent

variables AC and w is a zero mean white noise random vector of minimal

possible dimensionality. The reason for w holding the minimum dimension is to

increase the number of algebraic relationships the entries of AC can satisfy and

to accomplish the minimization faster. So the CTLS solution can be formulated

as follows:

MinIlwII2 (2.45)

subject to

(C+AC)( 1 )=0. (2.46)

Next, we consider the quadratic constraint equation in (2.46) which is expanded

into:

5 (2.47)
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where

- xiFiw-Fp+lw - xiFi-Fp+ (2.48)
i=1

Let

P
H Yx= x -Fp÷ , (2.49)

i=1

then we have

C 1 +HXw=0 = w=-HC (2.50)

where H+ is the pseudoinverse of Hx defined as

H+- H:x(HxHx*)"1. (2.51)

For any w, the solution vector x can satisfy (2.45) and (2.50); i.e., we have

dnil WI12 { C*H, +*H+C(X (2.52)

Next, let us define the analytic function J(x)

RX) m C,(H+,Hx+c I"x2.3

1*
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X=(X 1 ,..,xp).

J(x) can be simplified to the following expressions by substituting (2.51) into

(2.53).

J(x) = X~j C*Hx (HxH~ )4 Hj(HxH~x y1 C(I(X)

"= (•)*C*(HxH)-'Ic(1;"J(2.54,

X (2.54)

Hence, we conclude that the CTLS solution is obtained by minimizing

J(x). From (2.45) and (2.52), we try to find out the minimum of J(x) with a

respect to x. It is necessary to compute the first-order complex partial

derivative or complex gradient and set the derivative to be zero; namely,

a' ='-xa =0. (2.55)
ax a~x, axp)

Due to the complex data, Abatzoglou et al 16] defined a complex

version of the Newton method which uses the second-order complex partial

derivative of J(x) to update the values of x. The Newton iteration ( recursion)

is briefly described by

x(n+ 1) = x(n) + (Xý-WA - 9)-I(a- XB-Ia) (2.56)

17



where
ajT (•)j .. T

a =-•= i.1 =) =complex gradient of J
1 (a 2 j aliT I

A = -(,• + a21T unconjugated complex Hessian of J

a2j
B = i)xax = conjugated complex Hessian of J. (2.57)

Hence, by referring to the derivation in [6], we obtain the following

closed-form solutions for a, A and B:

a =(h*B)T

A =-!* H~x(HxH:x)-'B- (F* H~x(HxH:x)-' B)T

B=[1 *"(HXH*,)-'B]T + F [H~x(HxH~x)- Hx - I]F (2.58)

where

h = (H 1Hf)1C(X

B = CIp+.,p - [FiHxhl" .IFpHxh]

G = [F*hl...IFph]. (2.59)

The Newton method is implemented by starting with an Iterative

Quadratic Maximum Likelihood ( IQML ) algorithm [9]. This algorithm solves

a quadratic constraint minimization problem and derives the solution vector

from the coefficients of the linear prediction polynomial which correspond to the

parameters of the signals in a fast convergent way. We summarize its main

steps below:
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(a).initialization : set x(O)=xo=l at n=O, x is viewed as the vector composed of

the prediction polynomial coefficients and obtained using Newton iteration
x = (Xo, X1,,..x,)T 2-0(2.co0)

(b).compute•
N

Zy = • yjH XXIyj (2.61)
j=1

where Y p"'" Yi Yo
Yp+l" Y2 YiI . . . .•

(2.62)

Ym-1" Ym-p-2 Ym-p-1J

yi being the observations, and

Xp • X1 X0

XP = "'" "' (2 .63)

c).solve the Quadratic Minimization Problem :

mi• H Z(n)xmm+l)(x(n+ 1)Zy x(n+)) (2.64)

(d).set n=n+1 for real-time iteration

(e).check the convergence: II x(n-1) - x(n) II < e

(f).identify the roots of the prediction vector polynomial x which represent the

parameters of the received signal.
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E. LINEARLY CONSTRAINT TOTAL LEAST SQUARES

(LCTLS) ALGORITHM

1. Introduction

In this section we introduce a special case of the CTLS algorithm

called the Linearly Constrained Total Least Squares ( LCTLS ) technique. The

LCTLS technique is used to locate and resolve closely spaced frequencies in

the presence of a given known frequency component [10].

Recall that the TLS method solves the unconstrained problem:

(A + AA ) x = b + Ab. (2.65)

Using (2.13) to (2.18), we compute the minimum norm of the total perturbation

matrix AC which makes ( C + AC ) rank deficient and generates a vector z

defined from a null space. Equation (2.65) has a solution provided

( b + Ab ) e Range ( A +AA ). (2.66)

In this case, zn+1 *0 and we can solve for x. If zn+=--0, the TLS problem has no

solution. In addition, the non-zero last element zn+l is used to normalize the

vector z; i.e. we have

- ( Z Z=- Zn+1 (2.67)

2. Algorithm Derivation

To solve the LCTLS problem, we first look at the constraint equation:

v x = r (2.68)
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where T', x and r have dimensions px(n+l), (n+l)xl and p1l, respectively.

Equation (2.69) can also be expressed as below:

[% r] .) [ riz=o. (2.69)

Let us introduce a physical example to define the matrix [ VP r ]. First, we

consider a signal C(n) composed of two complex sinusoidal signals in white

noise:

C(n) = Aleiino, + A2ejnG" + w(n), n = 1, , N (2.70)

where ý(n) is the observed noisy data; w(n) is the white Gaussian noise; Ai is

the amplitude; oi is the angular frequency and N is the data length.

Assume that wo1 is known and (02 is unknown. Create a signal

source vector ).o(w) defined as:

)H(0) = [1, ejm, e j2e, e 3 , . . . , eJn]. (2.71)

We make X(o)) satisfy the constraint equation in (2.69), which leads to

,H(0) -1 = 0. (2.72)

The constraint forces ej' to be one of the roots of the prediction-error

polynomial e(o,) defined as:

e(co) = 0.2 (2.73)
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Then, the angle of the next closest root on the unit circle is chosen as the

estimate of the unknown angular frequency o2.

Next, considering the TLS equation given in (2.65) and constraint

given in (2.69) leads to

(A+AA b+AbJ =0  (2.74)

Next, using a SVD partition method to obtain the solution. To ensure the

constraint equation in (2.75) to be satisfied, we have to constrain the vector z to

fall in the null space of [ r ri which can be further factored out using QR

decomposition into

[%' r ]=[ 0AH,=o aiA (2.75)

H=A (2.76)

where 0 1 is an upper triangular matrix with a dimension (pxp) and AH is a

unitary matrix with a dimension (n+l)x(n+l). By comparing the matrix

dimensions from (2.69) and (2.75), we see that z should be the product of the

orthonormal basis A 2 with a dimension (n+l)x(n+l-p) for the null space of

T 'P F ] and an arbitrary non-zero vector Tj with a dimension (n+ l-p)x l, i.e.,

z = A211. (2.77)
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Next, define the matrix C as

C=CA2 A', (2.78)

with

C =[AI b]. (2.79)

The SVD of the matrix C is performed and C is partitioned into its signal and

noise subspaces, which leads to:

- .--H n+1-p H H

C=UMV - i ui vi (2.80)
i=l

or

o o U vH (2.81)

with

Vi : r-dimensional unconstrained part of the signal subspace

V2 : s-dimensional noise subspace

V3  p-dimensional constrained part

Y-= diag(oi., or)

2= (n+1-p I., s2n+i-p-r

1:3 =0.
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Using the fact that

AIA• + A24 = I, (2.82)

we get

C = CA A' + CA2A. (2.83)

Dowling et al [10] have suggested to enforce sphericity in the

concerned partitioned subspace to improve the frequency spectral estimation

performance. The term " sphericity " means that the singular values in the

signal and noise spaces are replaced with their mean values. For example,

assume that there exivts ( s=n+l-p-r ) equal singular values in the noise

subspace V2 ; i.e., th, noise singular values are replaced with the variance of

the random noise. By partitioning the truncated unitary matrix V below and

doing the same operations as in (2.37) and (2.38)

V=[_ V2 V (2.84)
V VIV2 3 gT C T fT,

we obtain the minimum norm solution corresponding to the noise subspace:

X CH (2.85)
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Further using the following identity

H cH 0 g lv , ,
C V][ HII]1i (2.86)V1 V2 V3J~ fv;H

which leads to the following two equations:

gHg+C H+fHf=1 = cHc =1-gHg fHf

V1g + V2c +V3f = 0 V2 c = -VgV 3f (2.87)

we obtain the minimum norm solution corresponding to the signal subspace:

VLL + Vfg * +(V.f*

LCTLS g2 -g _ (2.88)

Note that the minimum LCTLS solution should be based on the subspace V2 or

[V, V3], whichever one has the smaller dimension.
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III. TOTAL LEAST SQUARES TECHNIQUE

IMPLEMENTATION

A. INTRODUCTION

First, we study the performance of the TLS algorithm to estimate the

frequency of sinusoidal signals in noise. We assume the received signal x(n)

consists of M uniformly spaced signal data samples corrupted by a complex

white Gaussian noise w(n). The received signal is expressed by the following

equation and is observed over a duration of N seconds, assuming the sampling

frequency fs=lHz :

M
x(n)= IakeJ2nfkn+w(n), n=O, 1,-.., N-1 (3.1)

k=1

where

{ ak } a set of signal amplitudes

{ fk: a set of true signal frequencies

[x(n) ) measured complex-valued data samples

{ w(n) } random complex-valued noise samples and uncorrelated

with signals

Real and imaginary part of w(n) are assumed to have a variance a 2.

We are interested in estimating the signal frequency parameters fk; the

parameters ak are chosen to have unit magnitude for the sake of simplicity.

Note that we use the singular value decomposition ( SVD ) technique to solve

the linear prediction equation Ax=b which matrix form is given in (2.4). The

TLS implementation is expected to decrease the noise effects occurring both in
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the data matrix A and in the observation vector b simultaneously. First we

choose the order P of the prediction-error filter and solve a P-degree prediction-

error filter polynomial. Next, we determine the signal parameters from the M

zeros which are the closest to the unit circle. The other P-M zeros are called

extraneous zeros; they are approximately uniformly distributed inside the unit

circle. Note that the choice of optimal prediction-error filter order is important

since if the filter order is chosen too low, the closely-spaced sinusoids can not

be resolved. In addition, if the filter order is chosen too high, the noise zeros

may be mistaken for the true signal zeros as the noise zeros become very close

to the unit circle. Thus, we have to select the " optimal " prediction filter order

carefully.

B. ALGORITHM IMPLEMENTATION

The parameters used in the simulation are 4)1=4, ý2-0; f, and f2 represent
4

the frequency locations; w(n) are independent identically distributed ( i.i.d. )

white complex Gaussian noise samples with zero mean and variance 02 for

both real and imaginary parts. The signal-to-noise ratio ( SNR ) of the received

noisy signal is given by the peak amplitude of sinusoids to noise level and

defined as 10*log(-o.)dB. The sampling frequency is set to be 1Hz. The

frequency separation is chosen smaller than the reciprocal of the observation

time in order to resolve these two close-together frequencies and raise the

resolution. Simulations are performed using an ensemble of 30 independent

trials. For each trial, a data block of 50 ( N=50 ) data samples is used to

resolve two ( M=2 ) sinusoids. The frequency estimates are computed by
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choosing the two roots of the prediction-error filter transfer function or the two

zeros of the prediction-error filter polynomial which are the closest to the unit

circle in the complex z-plane. Different values of the filter order P in the range

of 2-49 can be used to observe the variations of estimation.

C. EXPERIMENTAL OBSERVATIONS

1. Performance of the Algorithm

We investigate the performance of the algorithm with a statistical

quantity called the effective standard deviation ( ESD ) defined below

T1 A_2

ESD= 1 TY
T• ifi f (3.2)

where

T the total number of independent trials
A

fi the estimated frequency at the ith realization

f the true signal frequency.

The ESD gives a measure of the distance between the true and the estimated

frequency locations. In this simulation, we first use fl=0.23Hz while f2 =0.27Hz.

The data including 41=4, ý2=0, P=8, N=50 and 30 independent trials are used

4

to compute the ESD. The selection of the two signal zeros is made by creating

two sector regions designated from the origin to point zl=0.3+j*0.7 and to point

z2= -0.3+j*0.7, respectively. Varying the SNR from 20dB to 0dB, we observe

that the sector region for f1=0.23Hz at SNR=OdB needs to be expanded by

changing zl=0.4+j*0.7 and the sector region for f2--0.27Hz at SNR=ldB needs

to be expanded by changing z2=-0.4+j*0.8. Here we display six different SNR
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cases which are 20dB, 12dB, 5dB, 3dB, 1dB and 0dB. We also observe that the

signal and noise zeros resolution becomes worse as the SNR becomes smaller,

as shown in Figures 3.1.1-3.1.6. Figure 3.1.6 shows the worst resolution as a

couple of noise zeros are on the unit circle and could potentially be considered

as the signal zeros. In addition, Table 1 shows that as the SNR becomes

smaller, the estimated deviations for both signal frequenc,,:s are getting larger.

The above simulation results compare with those obtained in [5].

2. Effects of Signal Phase Changes

Two sets of phases are chosen to investigate the effects of phase

changes: (1) 41=-, )2-0, (2) =-E, 42=---. The filter order is P=8; the

4 4 4

number of data samples points is N=50; 30 independent trials are used; the

signal frequencies are chosen as fl=0.25Hz, f2=0.27Hz; the SNR values

considered are 3dB and 12dB. Figures 3.2.1-3.2.4 show that phase changes do

not affect the resolution.

3. Effects of Filter Order Changes

Next, we consider the effect of changes in the prediction-error filter

order. Recall that it is important to choose the smallest value of P which

achieves a good frequency estimation performance. For this experiment, we

choose fl=0.25Hz, f2=0.27Hz, SNR=12dB, N=50, and 10 independent trials are

used. Figures 3.3.1 to 3.3.6 show the effects of changing the filter order. When

P=2, we have very poor resolution, as shown in Figure 3.3.1. Performance

slightly improves when P=4, as shown in Figure 3.3.2. Note that increasing the

filter order P improves the resolution of the estimated frequencies. For

example, when choosing P=8 and P=18, we observe that two sinusoidal signals
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are located exactly at their desired positions on the unit circle and the

extraneous zeros are uniformly distributed inside the unit circle, as shown in

Figures 3.3.3 & 3.3.4. However, if P is chosen too large, P=28 or P=38 for

example, we observe some of the P-M extraneous zeros of the prediction

polynomial are getting very close to the unit circle which make the distinction

between signal and noise zeros difficult to make, as shown in Figures 3.3.5 &

3.3.6.

4. Effects of Errors in the Subspace Partition Estimate

It is possible to express the TLS solution in the sense of minimum

norm. By applying the SVD technique to the linear prediction equation, we can

partition the unitary matrix V ( for handling complex data ) into two subspaces:

the signal subspace and the noise subspace. If the partition is performed

correctly, we can obtain a good zeros resolution by using a moderate filter

order P and high enough SNR, choosing P=8 and SNR=12dB for example, as

shown in Figure 3.3.3. However, if the partition is not performed correctly; i.e.,

the numbers of column vector of the signal subspace and the noise subspace

are not estimated properly, we observe that the extraneous zeros of the

prediction polynomial are randomly distributed. The more the signal and the

noise subspaces are incorrectly chosen, i.e., the worse the partition is, the

worse the resolution to identify the true sinusoidal signal locations becomes, as

shown in Figures 3.4.1 & 3.4.2. Figure 3.4.2 displays the worst degradation of

the performance since these two subspaces are mixed up by 6 column vectors

under the condition of SNR=12dB, P=-8, N=50 and 10 independent trials.
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5. Application to Damped Signals

In the following, we consider the case of a sum of two ( M=2 )

damped exponential sinusoids described as follows :

x(n)= e{(-an+j(2 Afn+O)} + e{-a 2n+j(2zfn+*1 )} +w(n), (3.3)

n =0, 1,. , N-I

where angular frequencies are fl=0.25Hz, f2=0.27Hz; the signal phases are

fixed at ý1=4, *2=0; the two damping factors are chosen a 1=0.8, a 2=0.9; the

4
number of data sample is N=50; the fidter order is P=8; 30 independent trials are

used for the simulation, and w(n) is still defined as the complex white Gaussian

noise. We observe that it is quite difficult to identify the exact locations of these

two damped sinusoidal signals at low SNR, for example 5dB, or at high SNR,

for example 20dB, as shown in Figures 3.5.1 & 3.5.2. Even if we increase the

filter order up to P=18, the resolution has not been improved still, as shown in

Figures 3.5.3 & 3.5.4.
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IV. RECURSIVE TLS TECHNIQUE

IMPLEMENTATION

A. THEORETICAL BACKGROUND

1. Introduction

As discussed before, the Total Least Squares ( TLS ) algorithm has

been shown to be more accurate than the Least Squares ( LS ) algorithm when

the errors or noise perturbations exist on both sides of a linear prediction

equation Ax=b. We now introduce an adaptive algorithm called the Recursive

Total Least Squares ( RTLS ) algorithm. In this algorithm, we perform the

updates by tracking the smaller one of the signal subspace or the noise

subspace partitioned from a unitary matrix containing complex data. It is

shown that the RTLS algorithm works better than the Recursive Least Squares

( RLS ) algorithm [4, p. 480] and the Least Mean Squares ( LMS ) algorithm

[4, p. 302] in terms of tracking property as well as steady-state tap-weight error

norms [ 11 ]. Furthermore, the updates can also be done using a computationally

efficient non-iterative subspace updating technique [12].

2. Algorithm Derivation

First, let us give a brief review of an adaptive process. An adaptive

process involves the automatical adjustment of a set of tap weights of a

prediction-error filter; i.e., it obtains an estimate of a desired response which

results from the inner product of a set of tap input and its corresponding set of

tap weights produced by the adaptive filter. Then, it compares this obtained

estimate with the actual values of the desired response and generates an
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estimation error. The estimation error is fed back to the adaptive process and

stimulates the prediction filter in a recursive way. Therefore, this is a closed-

loop operation and the final goal of the adaptive process is to make the output

error reach its minimum value. There are two good examples: the LMS

algorithm and the RLS algorithm.

In the TLS algorithm, we apply the singular value decomposition ( SVD)

technique to the augmented matrix spanned by the data matrix A and the

observation vector b. However, in the RTLS algorithm, we apply an eigen-

decomposition technique to a specific augmented matrix C(n) defined below to

get the desired subspaces and determine the effective rank of C(n) from its

singular values. In addition, we adopt a parameter a, called the exponential

weighting factor, which is similar to X (forgetting factor ) in the RLS algorithm.

C(n) = D,)[I A I b] (4.1)

where

D~n) = -ýdiag(an, .. ., aX). (4.2)

It is worthy to investigate the impact of the forgetting weight factor ca on

the tracking capability. The factor at is used to ensure that the data samples in

the distant past are "forgotten " so as to afford the possibility of following the

statistical variations of the observable data when the filter operates in a non-

stationary environment. It is designated to be a positive constant close to, but

smaller than one. Further speaking, the reciprocal of 1-(x can be considered as

a measure of" memory ". When a is equal to 1, which corresponds to infinite
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memory or most unforgettable case, the algorithm keeps all data samples and

the estimated frequencies have low variance. On the other hand, when a is

approaching to 0, which represents the motforetul case, the algorithm keeps

only a few data samples and the estimated frequencies have high variance.

As mentioned above, the RTLS algorithm applies the eigen-decomposition

technique to the newly augmented matrix C(n). The estimated time-varying

correlation matrix R(n) is expressed as

R(n) = cxR(, -) + (1 - a)y(n)y~n) (4.3)

where R(n) is defined as

R(n) - C(n)C (4.4)

In this tracking ( updating ) method, we use the rank-one eigenstructure

update recursively. In order to diminish the computational load, we use the

sphericity property proposed by DeGroat [12]. Spherical updating forces both

of the eigenvalues in the signal subspace and the noise subspace to be replaced

with their mean values. Thus, we form two different spherical subspaces

without changing the dimension of the diagonal matrix D of R(n). The spherical

subspace updating might be viewed as the nucleus of the RTLS adaptive filter

algorithm. We implement the eigendecomposition of the one-step past-time

correlation matrix R(n-1) to get the updated decomposition at time n. Thus, we

have the following updating

R(n-l) =: U(nI)D(n-1) UH3 (4.5)
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R~n =U~nDoUH (4.6)

(n) U(n) (n) (n) u 46

where for all present time n

unUH =UH U =1(4.7)V(n)V(n) U(n)U(n)=I(.7

and D(n) is still a diagonal matrix consisting of the eigenvalues.

This updating algorithm is developed to track the smaller averaged

eigenspace of the exponentially weighted correlation matrix R(n) under the

condition of forced sphericity of the eigenstructure. To determine the right

singular subspace of C (n), we need to obtain the eigenspaces of R (n)

corresponding to the right singular subspaces of C(n). For later simulation, we

get the vector y(n) extracted from the last row of matrix [ Aib ]. Next, for the

purpose of simplifying the derivation of the subspace updating, we neglect the

factor ( 1-a ) and adopt a new time-varying correlation matrix R for the rank-

one updating recursion

R(n) = (XR(n) + Y(n)Y(n). (4.8)

By substituting (4.6) into (4.8) and letting

X = UHY, (4.9)

we further get

y=UX (4.10)
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and derive the following form

R=U(aD+xx )UH. (4.11)

Since both of the RTLS algorithm and the TLS algorithm use the SVD-

based partition method, they have the same solution for the signal subspace and

the noise subspace, respectively. Namely, we can rewrite (2.36) and (2.39)

from Chapter II below:

for the signal subspace, the solution vector is

XRTLS = g (4.12)

for the noise subspace, the solution vector is

XR' 
(4.13)

C C .

In simulations considered later in this chapter, we use two signal

frequencies: one frequency is fixed and the other one is linear time-varying, so

the smaller subspace is the signal subspace. We assume that these two

complex sinusoidal signals have frequency components f2=0.27Hz and f,

moving around 0.23Hz with a moving weight of 3% and 10%; the phase

components are i=4, 02=-0; 10 independent trials and 10 recursive realizations

4

are used in this simulation. Note that we have four parameters to vary: the

filter order P, the exponential weighting factor a, the signal-to-noise ratio

(SNR ) and the moving weight of the time-varying signal frequency.
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3. Simulations

First, we apply the RTLS algorithm and use the spherical subspace

updating technique. Next, we compare the performance of the RTLS algorithm

with spherical updating with that of the RTLS algorithm without spherical

updating. A data length of 100 points and a window length of 50 points are

used in the following simulations. In addition, we assign the forgetting factor ct

to be one of the two values: 0.25 and 0.95. Next, we adopt one of the two

moving frequency weights: 3% and 10%. We would also like to see when the

resolution of signal zeros breakdowns by selecting various filter orders. Finally,

by fixing a=0.95 and the moving weight=10%, we decrease SNR to 0dB and

-5dB so as to observe the influence of low SNR on the resolution. The cases

studied are listed as follows:

a. Case (1)

Fix SNR=12dB, P=8, moving weight=3%

Change ot=0.25, 0.95.

b. Case (2)

Fix SNR=12dB, P=8, moving weight=10%

Use c=--0.95

c. Case (3)

Fix SNR=12dB, cc=0.95, moving weight=10%

Choose P=3, 5.

d. Case (4)

Fix P=8, aý-0.95, moving weight=10%

Decrease SNR=OdB, -5dB.
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B. EXPERIMENTAL OBSERVATIONS

1. Estimated Signal Subspace Obtained with Averaging the

Eigenvalues

The signal subspace information is used to estimate the two signal

frequencies. By using the data in case (1), for a=0.25, we observe that the

locations of the zeros are randomly distributed. It is very difficult to distinguish

signal zeros from noise zeros, as shown in Figure 4.1.1. The averaged

eigenvalues of the spherical updated matrix are presented in Figure 4.1.2. If (x

is chosen much higher, say a =0.95, we observe that the resolution becomes

very good and we can discern the fixed signal and the moving signal. It is

noted that the noise zeros just congregate forming a small cluster and are

distributed inside the unit circle, as shown in Figures 4.1.3 and 4.1.4. Hence, the

experiments show that the case of a--0.95 has much better resolution since it

keeps more data samples as shown in Figure 4.2.1. Next, we observe that it is

quite obvious to distinguish the fixed frequency ( a slight shift ) and the time-

varying frequency ( countable small circles ) using the data given in case (2).

The averaged eigenvalues are also displayed in Figure 4.2.2. Thus, results

show that the case with larger moving weight and higher forgetting factor

( approaching to one ) has the best zeros resolution and tracking capability.

Further speaking, the forgetting factor plays a more important role than the

moving weight. By using the data in case (3), we observe that in the case of

P=5 the " fixed " signal estimate shows some some variations. However, we

are still able to differentiate signal zeros from noise zeros, as shown in Figure

4.3.1. The performance gets worse when we use P=3, as shown in Figure

4.3.2. Usually the filter order number ( P ) is chosen larger than the true signal
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number ( M ), so we do not consider the case P=M here. Using the data in case

(4), we observe that the resolution becomes worse at very low SNR since

some noise zeros are very close to or on the unit circle and can be mistaken for

true signal zeros, as shown in Figures 4.4.1 & 4.4.2.

2. Estimated Signal Subspace Obtained without Averaging

Eigenvalues

Next, we consider the estimated correlation matrix R(n) obtained

without using averaged eigenvalues. Using the data in case (2), we obtain very

good resolution of the fixed frequency and the time-varying frequency, as

shown in Figure 4.5.1. The non-averaged eigenvalues of diagonal elements of

the correlation matrix are displayed in Figure 4.5.2. Next, using the data in case

(4) shows that the resolution becomes worse with very lower SNR, as shown

in Figure 4.6 to be compared with Figure 4.4. Besides, from the plot of non-

averaged eigenvalues, we see the signal eigenvalues are still much higher than

the noise eigenvalues as shown in Figures 4.6.2 & 4.6.4.

3. Estimated Noise Subspace Obtained with Averaging the

Eigenvalues

Here, we use the spherical subspace updating method and choose the

noise subspace to estimate the frequencies. The data are generated using the

characteristics of case (2) given in section 3. The results are quite different

from those obtained when choosing the signal subspace. Some of the noise

zeros appear on the unit circle and can potentially be mistaken for signal zeros,

as shown in Figure 4.7 to be compared with Figure 4.2. Next, using the data

defined in case (3) earlier, we still obtain poor resolution, as shown in Figure 4.8

to be compared with Figure 4.3. Next, we investigate the effects of the SNR on
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the resolution. Since the resolution of SNR=12dB plotted in Figure 4.7.1 is not

good, we raise the SNR to 15dB and 30dB. We observe that the resolution

does not improve, as shown in Figures 4.9.1 & 4.9.2. Therefore, we conclude

that it is much better and more efficient to adopt the signal subspace in tracking

two closely-spaced signal sources ( targets ) instead of adopting the noise

subspace, when using the spherical property.
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V. CONCLUSIONS

In this thesis, we first introduce the Least Squares ( LS ) algorithm which

only considers the errors or perturbations in the observation vector b of a linear

prediction equation Ax=b. Since the assumption is not realistic, we present the

Total Least Squares ( TLS ) algorithm which considers the errors or

perturbations in the observation vector b and the data matrix A. When there

exists some linear dependence algebraical relationship among the correlated

noise perturbation components in A and b, we need to modify the TLS

algorithm by taking into the dependence account, which leads to the

Constrained Total Least Squares ( CTLS ) algorithm. Next, we present the

Linear Constraint Total Least Squares ( LCTLS ) algorithm. The LCTLS can

be viewed as a special case of the CTLS algorithm and is used to resolve

closely-spaced frequencies with a given known frequency component. Then,

we present numerical implementations of the TLS algorithm. We investigate

the performances of the TLS algorithm to resolve two damped / undamped

complex sinusoidal signals in additive white noise. Next, we present a

numerical implementation of the Recursive Total Least Squares ( RTLS )

algorithm to locate a fixed signal frequency and to track a time-varying signal

frequency. The RTLS algorithm uses an eigendecomposition technique instead

of a singular value decomposition technique. We apply a spherical subspace

updating method in order to efficiently reduce the computational load and

compare the performances of the RTLS with and without spherical updating.

From the simulation, we observe the case with larger moving weight and

higher exponential weighting factor (forgetting factor ) has much better
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resolution and tracking capability, when the spherical signal subspace is used.

Furthermore, we show that the exponential weighting factor plays a more

important role than the moving weight. In addition, we see that the resolution

becomes worse at very low SNR because some noise zeros are approaching to

the unit circle and can be potentially mistaken for signal zeros. When we use

the signal subspace without using averaged eigenvalues, we observe that the

results do not have any significant difference from the case using averaged

eigenvalues. However, if we use the noise subspace with spherical averaged

eigenvalues, poor resolution is obtained. Therefore, it is better to adopt the

signal subspace for resolving two closely-spaced signal sources.
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TABLE 1. EFFECTIVE STANDARD DEVIATIONS OBTAINED
BY USING THE TLS ALGORITHM

SNR (dB) Estimated Deviation for Estimated Deviation for
fi=0.23Hz f2=0.27Hz

20 0.0020 8.5083e-04

18 0.0030 9.1698e-04

16 0.0049 0.0046

14 0.0047 0.0033

12 0.0097 0.0073

10 0.0058 0.0065

8 0.0054 0.0203

7 0.0189 0.0133

6 0.0198 0.0164

5 0.0073 0.0166

4 0.0217 0.0388

3 0.0106 0.0461

2 0.0231 0.0333

1 0.0325 0.0108

0 0.0684 0.1816
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Figure 3.1.1 TLS solution for SNR=20dB, P=8
N=50, fi=0.23, f2=0.27, undamped sinusoids
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Figure 3.1.2 TLS solution for SNR=12dB, P=8
N=50, fi=0.23, f2=0.27, undamped sinusoids
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Figure 3.1.3 TLS solution for SNR=5dB, P=8
N=50, fi=0.23, f2--0.27, undamped sinusoids
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Figure 3.1.4 TLS solution for SNR=3dB, P=8,
N=50, fi=0.23, f2=0.27, undamped sinusoids
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Figure 3.1.6 TLS solution for SNR=OdB, P=8
N=50, fi=0.23, f2--0.27, undamped sinusoids
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Figure 3.2.1 TLS solution for SNR=3dB, P=8

N=50, fi=0.25, f2=0.27, undamped sinusoids
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Figure 3.2.2 TLS solution for SNR=12dB, P=8

N=50, f1=0.25, f2--0.27, undamped sinusoids
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fi=0.25, f2=0.27, n--W/4, 02=-2r4, undamped sinusoids
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Figure 3.3.1 TLS solution for SNR=12dB, P=2
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Figure 3.3.2 TLS solution for SNR=12dB, P=4
N=50, fi=0.25, f2=0.27, undamped sinusoids
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Figure 3.3.3 TLS solution for SNR=12dB, P=8
N=50, fi=0.25, f2--0.27, undamped sinusoids
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Figure 3.4.2 TLS solution for SNR=l2dB, P=8
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signal and noise subspaces mixed by 6 columns

52



1.5 aiphal-4.8 fl=-0.2t f2=0.27
OJpha2-=O.9 phil-I/=4, phi2=O

1*

0.5 . . . . .*. . 0.. . . ... ... .. . . . . . .

0 ... ... v . ..... *.. a& ......

:30 independent trial

-1.5 £ _ _ _ _ _ _ _ _ _ _ _ _ _

-1.5 -1 -0.5 0 0.5 1 1.5
Figure 3.5.1 'TLS solution for SNR=5dB, P=8
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Figure 3.5.2 TLS solution for SNR=2OdB, P=8
N=50, fi=O.25, f2--0.27, damped sinusoids
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Figure 3.5.4 TLS solution for SNR=2OdB, P=1 8
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Figure 4.1.1 RTLS solution for SNR=12dBP=8,N=100

a=0.25, weight=3%, fl is time-varying, using
the signal subspace information & performing
the eigendecomposition of spherical matrix 'S'
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Figure 4.1.2 averaged eigenvalues of updated spherical matrix 'S'

SNR=12dBP=8,N=100,o--0.25,weight=3%,fi is time-varying
solution derived by using the signal subspace information
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Figure 4.1.3 RTLS solution for SNR=12dBP=8,N=100
a=0.95, weight=3%, fl is time-varying, using
the signal subspace information & performing
the eigendecomposition of spherical matrix 'S'
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Figure 4.1.4 averaged eigenvalues of updated spherical matrix 'S'

SNR=12dB,P=8,N=100,a=0.95,weight=3%,fi is time-varying
solution derived by using the signal subspace information
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the signal subspace information & performing
the eigendecomposition of spherical matrix 'S'
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Figure 4.2.2 averaged eigenvalues of updated spherical matrix 'S'

SNR=12dB,P=8,N=100,a=0.95,weight= 10%,fi is time-varying
solution derived by using the signal subspace information
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Figure 4.3.1 RTLS solution for SNR=12dB, P=5, N=100
a=0.95, weight=10%, fi is time-varying, using
the signal subspace information & performing
the eigendecomposition of spherical matrix 'S'
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Figure 4.3.2 RTLS solution for SNR=12dB, P=3, N=100
a=0.95, weight=10%, fi is time-varying, using
the signal subspace information & performing
the eigendecomposition of spherical matrix 'S'
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Figure 4.5.1 RTLS solution for SNR=12dBP=8,N=100
a=0.95, weight=10%, fl is time-varying, using
the signal subspace information & performing
the eigendecomposition of spherical matrix 'R'
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Figure 4.5.2 non-averaged ¢igenvalues of correlation matrix 'R
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solution derived by using the signal subspace information
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Figure 4.6.1 RTLS solution for SNR=OdBP=8,N=100
a=0.95, weight=10%, fi is time-varying, using
the signal subspace information & performing
the eigendecomposition of spherical matrix 'R'
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Figure 4.6.2 non-averaged eigenvalues of correlation matrix 'R'

SNR=OdB,P=8,N=100,a=0.95,weight=10%,fi is time-varying
solution derived by using the signal subspace information
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0.5 ....... '................. . .

o ... .. .. ..*.. ..... ...

10 independent trials
10 recursive reihzatios

-1.5
-1.5 -1 -0.5 0 0.5 1 1.5

Figure 4.6.3 RTLS solution for SNR=-5dBP=8,N=100
a=0.95, weight=10%, fi is time-varying, using
the signal subspace information & performing
the eigendecomposition of spherical matrix 'R'
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Figure 4.6.4 non-averaged eigenvalues of correlation matrix 'R'

SNR=-5dB,P=8,N=1 00,a=0-.95,weight-1 O%,fi is time-varying
solution derived by using the signal subspace information

62
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Figure 4.7.1 RTLS solution for SNR=l2dB,P=8,N=100
a=0.95, weight=10%, fi is time-varying, using
the noise subspace information & performing
the eigendecomposition of spherical matrix 'S'
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Figure 4.7.2 averaged eigenvalues of updated spherical matrix 'S'

SNR=12dBP=8,N=100,a=0.95,weight=10%,fi is time-varying
solution derived by using the noise subspace information
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Figure 4.8.1 RTLS solution for SNR=12dBP=5,N=100
a=0.95, weight=10%, fi is time-varying, using
the noise subspace information & performing
the eigendecomposition of spherical matrix 'S'
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Figure 4.8.2 RTLS solution for SNR=12dBP=3,N=100
a=0.95, weight=10%, fi is time-varying, using
the noise subspace information & performing
the eigendecomposition of spherical matrix 'S'
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Figure 4.9.1 RTLS solution for SNR=15dBP=8,N=100
a=0.95, weight=10%, fl is time-varying, using
the noise subspace information & performing
the eigendecomposition of spherical matrix 'S'
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Figure 4.9.2 RTLS solution for SNR=30dBP=8,N=100

a=0.95, weight=10%, ft is time-varying, using
the noise subspace information & performing
the eigendecomposition of spherical matrix 'S'
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APPENDIX A : MATLAB SOURCE CODE

This appendix consists of MATLAB codes used to implement the Total

Least Squares ( TLS ) algorithm mentioned in Chapter III and the Recursive

Total Least Squares ( RTLS ) algorithm mentioned in Chapter IV.

1. IMPLEMENTATION OF THE TLS ALGORITHM

clear

%initialize the set of roots

nn=input(' trial number ');

SNR=input(' S/N(dB) = ');

p=input(' prediction filter order ');

yl =zeros(p, 1);y2=zeros(p, 1);

%construct the received signal and begin the trial

for h=l :nn,

n=0:49;

rand('normal');

wl=rand(1,50);

rand(normal');

w2--rand(1,50);

fl=0.25; %signal frequencies

f2=0.27; %f 1=0.23 for option

phil-=pi/4; %signal phase angles

phi2=0;
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alphal=O.8; %decaying constants

alpha2=O0.9;

j~sqrt(- 1);

wn=w 1+j*w2; %independent complex noise

slI=exp(j*(2*pi*fl *n+pbjl)); %create two undamped signals

s2=expoj*(2*pi*f2*n+phi2));

s 1=exp(-alphal *n+j*(2*pi*fl *n+phjl )); %create two damped signals

s2--exp(-alpha2*n+j*(2*pi*f2*n+phi2));

ss=sl1+s2;

xn=ss+sqrt( 1/(2*1 OA(SNR/1 O))).*wn; %received resulted signal

nsin=2; %for two sinusoidal sources

n=50; %window data sample number

if n>p+2,

for k=1 :n-p,

A(k,1:p)=xn(k:p+k-l); %generate data matrix

end

b=xn(1 ,p+1 :n); %generate observation vector

bb=conj(b)';

end

C=I[bb A); %create augmented matrix

[u,s,v]=sve(c); %perform singular value decom.

sigma=diag(s);

ct--v(1,nsin+1 :p+1); %extract the desired vector

c~conj(ct)';

vp=v(2:p+1 ,nsin+1 :p+l);
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v2=[ct;vp];

xtls=-(vp*conj(c))./(conj(ct)*c); %solution from noise subspace

z=[1 -fliplr(conj(xtls)')]; %prediction filter polynomial

rt=[rt roots(z)];

zl= 0.3+j*0.7; %create sector regions vs. origin

z2=-0.3+j*0.7;

real-rt-real(rt);

for nl=l:p, %calculate estimated deviations

if real~rt(nl~h) > 0,

yl(nl,h)--rt(nl,h);

y II=sort(yl);

yl 1=flipud(yl 1);

new..y 11(1 :p/2,h)=yl 1I(1 :p/2,h);

kl1=find((angle(new...yl 1(1:p/2,h)) > angle(zl ))...

& (angle(new...IyI 1(1:p/2,h)) < piI2));

if length(kl)-=1,

error('More than 1 element of new..y 11 is nonzero.');

end

esti...yl 11(l,h)=new..yl 11(klI,h);

estdl1=sqrt( l/nn*(sum(abs(est~yl 11(1,h)...

-(0.1 253+j *0.9921) .*ones(l1,nn)) .A2)));

else

y2(nl ,h)--rt(nl ,h);

y22=sort(y2);

y22=flipud(y22);
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new...y22(1 :pt2,h)=y22(l1:p/2,h);

k2=fmnd((angle(new-y22(l1:p/2,h)) > pi/2)...

& (angle(new...y22(l1:pt2,h)) < angle(z2)));

if length(k2)-=1,

error('More than 1 element of new...y22 is nonzero.');

end

esti4y22(l ,h)=new...y22(k2,h);

estd2--sqrt( 1/nn*(sum(abs(esti-y22(l1,h)...

-(-0.1 253+j *0.9921) .*ones(1 ,nn)) A2)));

end

end

end

%plot the zeros distribution situations

axis('square')

axis(II-1.5 1.5 -1.5 1.5])

grid

title(' TLS solution for SNR= , P=, N= )

text(- 1.1,1.3,' alphal=')

text(-1.,., alpha2=')

text(0,1.3,' fl= ,f2= )

text(0, 1. 1,' philI= , phi2= ')

text(0,-1.3,' 30 independent trials')

text(-l ,-1 .4,' destroyed signal subspace by # columns')
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%REMARKS:

%(1).When SNR down to 1 dB, we need change z2 to -0.4+j*0.8

% in order to make k2 for new.y22 satisfy 'find' condition.

%(2).For SNR down to 0 dB, we have to change zl to 0.4+j*0.7

% in order to make kI for new-yl 1 satisfy 'find' condition.
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2. IMPLEMENTATION OF THE RTLS ALGORITHM USING

THE SIGNAL SUBSPACE AND PERFORMING THE EIGEN-

DECOMPOSITION OF MATRIX' S'

Note that S = ox*D+(l-a)*f3*P3H = UH*x

clg

clear

%initialization of conditions

rt=[];esp=[I;sig=[1;noi=[];

nt-input(' trial number= ');

ni=input(' iteration number=- ');

p =input(' prediction order=-');

SNR=input(' signal-to-noise ratio, S/N(dB)= ');

weight=input(' the weight of moving frequency= ');

alpha--input(' exponential weighting factor, alpha= ');

%construct received signal and begin independent trial

for h=1:nt,

nl=l:100;

rand('normal');

wl--rand(l,100);

rand('normal');

w2=rand(1,100);

fl =0.23-(h-l)*weight/nt; %make fi time-varying moving

f2=0.27;

phil =pi/4;

phi2=0;
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j=sqrt(-1);

wn=wl+j*w2; %independent complex noise

sl =exp(j*(2*pi*fl*nl +phil)); %create two undamped signals

s2=expo*(2*pi*f2*nl+phi2));

ss=s I +s2;

xn=ss+sqrt(1/(2*10A(SNR/10))).*wn; %received resulted signal

nsin=2; %for two sinusoidal sources

n2=50; %window data sample number

if n2>p+2,

for k=l :n2-p,

A(k, 1 :p)=xn(k:p+k- 1); %generate data matrix

end

b=xn(1,p+1 :n2); %generate observation vector

bb=conj(b)';

end

B=[bb A];

aph=alpha .An 1;

aph=fliplr(aph(1 :n2-p));

T=sqrt(diag(aph));

C=T*B; %create augmented matrix

R=C'*C; %define estd. correlation matrix

[U,D]=eig(R); %perform eigendecomposition

for t=l :ni, %recursively update subspace

y=xn(1,n2-p+t:n2+t);

x=y7;
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beta--U'*x;

DlI =sort((diag(D)));

D2=flipud(D 1);

D2--D2';

seigval=mean(D2( 1:nsin));

n-eigval=mean(D2(nsin+l1:p+ 1));

se.igspa=s...eigval .*eye(ns~in);

n...eigspa--n...e~igval .*eye(p..fl n+ 1);

s-diaspa=diag(s...eigspa);

n-diaspa-diag(n...eigspa);

Dhatl1=[...eigspa zeros(nsin,p-nsin+ 1)];

Dhat2=[zeros(p-nsin+l1,nsin) n-eigspa];

Dhat =[Dhatl ;Dhat2];

S=alpha .*Dhat+I(1 -alpha) .*beta*beta; %our major concern

[UU,DD]=eig(S);

Unew=U*UU;

Dnew=DD;

gt=Unew(1,1:nsin); %extract the desired vector

g=conj(gt)';

ul1p=Unew(2:p+ 1,1:nsin);

ul=I[gt;ulp];

xtls=(ulp*conj(g))./(1-conj(gt)*g); %solution from signal subspace

Z=[ 1 -fliplr(conj(xdls)')];

rt=[rt roots(z)];

esp--[esp D2'J;
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sig=[sig s.diaspa];

noi=[noi ndiaspa];

U=Unew; %assign new U & D for updating

D=Dnew;

end

end

%plot zeros in complex z-plane

axis('square');

axis([-1.5 1.5 -1.5 1.5]);

plot(sin(0:2*pi/100:2*pi),cos(0:2*pi/100:2*pi),'-w',...

real(rt),imag(rt),'o'),grid

title(' RTLS solution for SNR= dB, P= , N= ');

text(- 1,1.3,' alpha= ');

text(- 1,1.1,' weight= ');

text(0.1,1.1,' fl moving, f2=0.27 ');

text(0.1,1.3,' phil=pi/4, phi2--O ');

text(-0.5,-1.2,' 10 independent trials ');

text(-0.5,-1.4,' 10 recursive realizations ');

%plot spherical singularvalues status of updated matrix

clg

axis;

n3=1:p+l;

plot(n3,esp,'o'),grid
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3. IMPLEMENTATION OF THE RTLS ALGORITHM USING

THE SIGNAL SUBSPACE AND PERFORMING THE EIGEN-

DECOMPOSITION OF MATRIX ' R'

Note that R = a*R+(1-a)*x*xH

clear

%initialization of conditions

rt=[I;esp=[];

nt--input(' trial number=-');

ni--input(' iteration number=-');

p =input(' prediction order=-');

SNR=input(' signal-to-noise ratio, S/N(dB)= ');

weight=input(' the weight of moving frequency= ');

alpha=input(' exponential weighting factor, alpha= ');

%construct received signal and begin independent trial

for h=1:nt,

nl=1:100;

rand('normal');

wl=rand(1,100);

rand('normal');

w2=rand(1,100);

fl =0.23-(h- 1)*weight/nt; %make fi time-varying moving

f2=0.27;

phil=j, ,4;

phi2=O;

j=sqrt(-1);
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wn=w 1 +j*w2; %independent complex noise

sl =exp(j*(2*pi*fl *nI +phi 1)); %create two undamped signals

s2=exp(j*(2*pi*f2*n 1 +phi2));

ss=s 1 +s2;

xn=ss+sqrt(l/(2*10A(SNR/10))).*wn; %received resulted signal

nsin=2; %for two sinusoidal sources

n2=50; %window data sample number

if n2>p+2,

for k=l :n2-p,

A(k,1:p)=xn(k:p+k-1); %generate data matrix

end

b=xn(1,p+l :n2); %generate observation vector

bb=conj(b)';

end

B=[bb A];

aph=alpha Anl;

aph=fliplr(aph(1 :n2-p));

T=sqrt(diag(aph));

C=T*B; %create augmented matrix

R=C'*C; %define estd. correlation matrix

[U,D]=eig(R); %perform eigendecomposition

for t=l:ni, %recursively update subspace

y=xn(1,n2-p+t:n2+t);
x=y' ;

R=alpha .*R+(1 -alpha) .*x*x'; %our major concern
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[U,DD]=eig(R);

Dl =-flipud(sort((diag(DD))));

gt=UU(1 ,1 :nsin); %extract the desired vector

g=conj(gt)Y;

ulp=UU(2:p+1 ,1:nsin);

ul=[gt;ulp];

xtls=(u lp*conj(g))./( 1 coni(gt)*g); %solution from signal subspace

z-=[ -fliplr(conj(xtls)')];

rt=I[rt roots(z)];

esp=[esp DlI];

end

end

%plot zeros in complex z-plane

axis('square');

axis([-1.5 1.5 -1.5 1.5]);

real(rt),imag(rt),'o'),grid

title(' RTLS solution for SNR= dB, P= , N= )

text(- 1, 1.3,' alpha=')

text(- 1, 1.1,' weight--')

text(O. 1, 1.1,' fl moving, f24O.27 )

text(O.1,l.3, phil=pi/4, phi2=O');

text(-O.5,-1 .2,' 10 independent trials ');

text(-0.5,-l.4,' 10 recursive realizations')

cig
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axis;

n3=1:p+1;

plot(n3,esp,'o'),grid
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4. IMPLEMENTATION OF THE RTLS ALGORITHM USING

THE NOISE SUBSPACE AND PERFORMING THE EIGEN-

DECOMPOSITION OF MATRIX ' S'

Note that S = a*D+(1-a)*13*f3H 0 = UH*X

cig

clear

%initialization of conditions

rt=[] ;esp=[];sig=[];noi=[];

nt--input(' trial number= );

ni--input(' iteration number=- ');

p =input(' prediction order=- ');

SNR=input(' signal-to-noise ratio, S/N(dB)= ');

weight=input(' the weight of moving frequency= ');

alpha--input(' exponential weighting factor, alpha= ');

%construct received signal and begin independent trial

for h= 1:nt,

nl=1:100;

rand('normal');

wl--rand(1,100);

rand('normal');

w2=rand(1,100);

fl =0.23-(h-1)*weight/nt; %make fi time-varying moving

f2=0.27;

phil=pi/4;

phi2=0;
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j=sqrt(-1);

wn=wl+j*w2; %independent complex noise

sl=exp(j*(2*pi*fl*nl+phil)); %create two undamped signals

s2=exp(j*(2*pi*f2*nl +phi2));

ss=sl +s2;

xn=ss+sqrt(l/(2*1OA(SNR/10))).*wn; %received resulted signal

nsin=2; %for two sinusoidal sources

n2=50; %window data sample number

if n2>p+2,

for k=l :n2-p,

A(k, 1 :p)=xn(k:p+k- 1); %generate data matrix

end

b=xn(1,p+l :n2); %generate observation vector

bb=conj(b)';

end

B=[bb A];

aph=alpha Anl;

aph=fliplr(aph(1:n2-p));

T=sqrt(diag(aph));

C=T*B; %create augmented matrix

R=C'*C; %define estd. correlation matrix

[U,D]=eig(R); %perform eigendecomposition

for t= 1:ni, %recursively update subspace

y=xn(1,n2-p+t:n2+t);

x=yI;
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beta=UJ*x;

Dl =sort((diag(D)));

D2=flipud(D 1);

D2--D2';

s...e~igval=mean(D2( 1:nsin));

n-eigval=mean(D2(nsin+1 :p+l ));

sefigspa=s-.f..igval .*eye(nsjn);

n-.!.eigspa-n-eigval .*eye(p-.nsjn+l);

sjdiaspa=diag(s...eigspa);

n-diaspa=diag(nieigspa);

Dhatl=[seigspa zeros(nsin,p-nsin+1)I;

Dhat2--[zeros(p-nsin+1 ,nsin) n...eigspa];

Dhat =[Dhatl ;Dhat2];

S=alpha .*Dhat+(1-alpha) .*beta*beta; %our major concern

[UIJ,DD]=eig(S);

Unew=U*UU;

Dnew=DD;

ct=Unew(1,nsin+1 :p+ 1); %extract the desired vector

c=conj(ct)';

vp=Unew(2:p+1 ,nsin+1 :p+ 1);

v2=[Ict;vp];

xtls=-(vp*conj(c))./I( .conj(ct)*c); %solution from noise subspace

Z=[ 1 -fliplr(conj(xtls)')];

rt=[rt roots(z)];

esp=[esp D2'];
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sig=[sig s.diaspa];

noi=[noi n_diaspa];

U=Unew; %assign new U & D for updating

D=Dnew;

end

end

%plot zeros in complex z-plane

axis('square');

axis([-1.5 1.5 -1.5 1.5]);

plot(sin(0:2*pi/100:2*pi),cos(0:2*pi/100:2*pi),'-w',...

real(rt),imag(rt),'o'),grid

title(' RTLS solution for SNR= dB, P= , N= ');

text(- 1,1.3,' alpha= ');

text(- 1,1.1,' weight= ');

text(0.1,1.1,' fl moving, f2=0.27 ');

text(0. 1,1.3,' phil =pi/4, phi2=0');

text(-0.5,-1.2,' 10 independent trials ');

text(-0.5,-1.4,' 10 recursive realizations ');

%plot spherical singularvalues status of updated matrix

clg

axis;

n3=1 :p+l;

plot(n3,esp,'o'),grid
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